# Study of Enhanced College Advising in Upward Bound: Impacts on Steps Toward College APPENDICES 

Alina Martinez
Mathematica Policy Research

Tamara Linkow<br>Hannah Miller<br>Amanda Parsad<br>Abt Associates



- a INSTITUTE OF

EDUCATION SCIENCES

NATIONAL CENTER FOR EDUCATION EVALUATION AND REGIONAL ASSISTANCE

This page has been left blank for double-sided copying.

# Study of Enhanced College Advising in Upward Bound: Impacts on Steps Toward College APPENDICES 

## October 2018

Alina Martinez

Mathematica Policy Research
Tamara Linkow
Hannah Miller
Amanda Parsad
Abt Associates

Marsha Silverberg
Project Officer
Institute of Education Sciences

NCEE 2018-4015
U.S. DEPARTMENT OF EDUCATION

## U.S. Department of Education

Betsy DeVos
Secretary

## Institute of Education Sciences

Mark Schneider
Director

## National Center for Education Evaluation and Regional Assistance

## October 2018

This report was prepared for the Institute of Education Sciences under Contract ED-IES-12-C0087. The project officer is Marsha Silverberg in the National Center for Education Evaluation and Regional Assistance.

IES evaluation reports present objective information on the conditions of implementation and impacts of the programs being evaluated. IES evaluation reports do not include conclusions or recommendations or views with regard to actions policymakers or practitioners should take in light of the findings in the report.

This report is in the public domain. Authorization to reproduce it in whole or in part is granted. While permission to reprint this publication is not necessary, the citation should read: Martinez, A., Linkow, T., Miller, H., \& Parsad, A. (2018). Study of Enhanced College Advising in Upward Bound: Impacts on Steps Toward College, Appendices (NCEE 2018-4015). Washington, DC: National Center for Education Evaluation, Institute of Education Sciences, U.S. Department of Education.

This report is available on the Institute of Education Sciences website at http://ies.ed.gov/ncee.
Alternate Formats: Upon request, this report is available in alternate formats, such as Braille, large print, audiotape, or computer diskette. For more information, please contact the Department's Alternate Format Center at 202-260-9895 or 202-205-8113.
Appendix A: Additional Details of Find the Fit ..... 1
A. 1 Underlying Research on Which Find the Fit Was Based ..... 1
A. 2 Details about Find the Fit Components ..... 2
A.2.1 Student Materials ..... 2
A.2.2 Messaging Program. ..... 3
A.2.3 Training Webinars for Advisors. ..... 5
Appendix B. Methodological Details ..... 7
B. 1 Study Sample ..... 7
B.1.1 Study Sample Is Similar to Upward Bound Population ..... 7
B.1.2 Several Steps Occurred from Initial Recruited Sample to Creation of Analytic Samples ..... 9
B.1.3 Random Assignment Was Conducted within Groups Based on Important Characteristics ..... 10
B.1.4 Treatment and Control Groups Were Equivalent at Baseline ..... 11
B. 2 Data Sources and Measures ..... 13
B.2.1 Interim Outcome Measures ..... 13
B.2.2 Measures of Find the Fit Implementation and College Advising ..... 16
B.2.3 Student and Project Characteristics ..... 19
B. 3 Analytic Methods ..... 22
B.3.1 Overall Impacts ..... 22
B.3.2 Impacts within Subgroup ..... 23
B.3.3 Sensitivity Analyses ..... 24
B.3.4 Variation by Implementation Levels ..... 25
B. 4 Power Analyses ..... 25
Appendix C. Supplemental Information for Chapter 2 ..... 29
C. 1 Applied to Four or More Colleges ..... 29
C. 2 Selectivity Level of Colleges to Which Students Applied ..... 31
C. 3 Importance of Academic Quality in Choosing a College. ..... 38
C. 4 Complete FAFSA by March 15 ..... 41
Appendix D. Supplemental Information for Chapter 3 ..... 43

## Exhibits

Exhibit A.1: Description of Find the Fit Content and Mapping to Challenges Addressed ..... 3
Exhibit A.2: Sample Text Messages ..... 4
Exhibit A.3: Find the Fit Programmed Messages ..... 5
Exhibit B.1: Characteristics of Study Projects versus All Eligible Upward Bound Projects ..... 7
Exhibit B.2: Characteristics of Students in Study Projects versus Students in All Eligible Upward Bound Projects ..... 8
Exhibit B.3: Flow of Projects and Students from Recruitment to Analytic Samples ..... 9
Exhibit B.4: Host Institution Type and Locale of Study Projects, by Random Assignment Status ..... 10
Exhibit B.5: Characteristics of Study Projects, by Random Assignment Status ..... 11
Exhibit B.6: Characteristics of Students in the Study, by Random Assignment Status ..... 12
Exhibit B.7: Target Sample and Response Rate for Surveys ..... 13
Exhibit B.8: Outcome Measures Construction and Percentage of Students Missing Data ..... 14
Exhibit B.9: Baseline Equivalence in the Sample Used for Impact Analyses for Outcomes Constructed from Follow-Up Survey. ..... 16
Exhibit B.10: Implementation and College Advising Measures Construction and Missing Data ..... 17
Exhibit B.11: Congruence between Annual Performance Report and Baseline Student Survey Data ..... 19
Exhibit B.12: Student and Project Baseline Characteristics Construction and Missing Data. ..... 20
Exhibit B.13: Comparison of Design Assumptions and Actual Sample Statistics ..... 26
Exhibit B.14: Achieved Minimum Detectable Effects for Overall Sample for Interim Outcomes and College Advising Measures ..... 26
Exhibit B.15: Achieved Minimum Detectable Effects for Student and Project Subgroups for Three Interim Outcomes ..... 27
Exhibit B.16: Achieved Minimum Detectable Effects for Student and Project Subgroups for Selectivity Level of Colleges to which Students Applied ..... 28
Exhibit C.1: Impacts of Find the Fit on Whether Students Applied to Four or More Colleges, Overall and for Subgroups ..... 29
Exhibit C.2: Sensitivity Analyses for Impact of Find the Fit on Whether Students Applied to Four or More Colleges ..... 30
Exhibit C.3: Number of Colleges to which Students Reported Applying ..... 30
Exhibit C.4: Impact of Find the Fit on Selectivity Level of Colleges to which Students Applied. ..... 31
Exhibit C.5: Impact of Find the Fit on Selectivity Level of Colleges to which Students Applied, by Student Subgroup ..... 31
Exhibit C.6: Impact of Find the Fit on Selectivity Level of Colleges to which Students Applied, by Project Subgroup ..... 35
Exhibit C.7: Sensitivity Analyses for Impact of Find the Fit on Selectivity Level of Colleges to which Students Applied ..... 37
Exhibit C.8: Impact of Find the Fit on Whether Academic Quality was Somewhat Important or Very Important to Students in Choosing a College ..... 38
Exhibit C.9: Impacts of Find the Fit on Whether Academic Quality was Very Important to Students in Choosing a College, Overall and for Subgroups ..... 39
Exhibit C.10: Sensitivity Analyses for Impact of Find the Fit on Whether Academic Quality was Very Important to Students in Choosing a College ..... 40
Exhibit C.11: Impacts of Find the Fit on Whether Students Completed the FAFSA by March 15, Overall and for Subgroups ..... 41
Exhibit C.12: Sensitivity Analyses for Impact of Find the Fit on Whether Students Completed the FAFSA by March 15 ..... 42
Exhibit D.1: Treatment Group Projects’ Reported Use of Each Find the Fit Material ..... 43
Exhibit D.2: Impacts of Find the Fit on Three Interim Outcomes, by Project Implementation Category ..... 44
Exhibit D.3: Impacts of Find the Fit on Selectivity Level of Colleges to which Students Applied, by Project Implementation Category ..... 44

## Appendix A: Additional Details of Find the Fit

This appendix outlines the research underlying Find the Fit and provides details about the three components of Find the Fit: student materials, messaging program, and training webinars for advisors. As discussed in Section 1.3 of the report, Find the Fit was intended to address three challenges that students may face related to the logistics of applying, financial hurdles and misperceptions about college costs, and limited expectations when applying to and selecting a college.

## A. 1 Underlying Research on Which Find the Fit Was Based

Find the Fit brought together promising strategies identified by previous research, including research on interventions that had undergone rigorous study but were tested with populations and in settings different from Upward Bound. Strategies from these interventions were combined into Find the Fit. This section describes the research that informed Find the Fit and adaptations that were made to suit the Upward Bound program model and population of students.

Customized information about college opportunities, costs, and quality. In one study, low-income, highachieving students who received customized information packets-which included important information about applying to colleges, key milestones in the application process, and sample colleges to which they were admissible-applied to and were admitted to more colleges, including more selective colleges that had higher graduation rates, than did students who had not received these packets (Hoxby and Turner 2013). The information sent to students was extensive, and the study specifically targeted high-achieving students who were unlikely to be receiving much relevant college advising, and who would likely bear no cost if they attended a highly selective college because they likely would receive very generous financial aid packages. Find the Fit included materials adapted from that study-specifically individual items that wound up in Find the Fit's student packets-to better reflect the Upward Bound population, which includes students who are much more diverse in their achievement and literacy levels, already receive college advising through the program, and may face a higher cost if they choose to attend more selective colleges.

Short activities to reduce students' fears of the unfamiliar. Psychologists have found that brief activities can reduce students' fears about fitting in or belonging in unfamiliar situations, and can also increase students' beliefs that intelligence and other personal attributes are malleable (Aronson, Fried, and Good 2002; Yeager et al. 2014). For example, students exposed to a two-part intervention-first reading about other students who initially felt they did not belong in college but whose sense of not belonging dissipated over time, and then writing about how their own worries had changed over time-earned higher grades and reported being happier than did students in a control group (Walton and Cohen 2011). This intervention was targeted at college freshmen to help them stay in college. With input from a principal investigator on that research team (Walton), an activity was adapted for Find the Fit to target high school students looking ahead to college and perhaps feeling anxious about the transition to a new and unfamiliar setting.

Semi-customized, real-time text messages. Several previous studies suggested that sending students semicustomized, real-time text messages can increase college enrollment, college persistence, and FAFSA completion for some groups of students, particularly those enrolling in or enrolled at two-year colleges, who have less access to college-planning supports, or who are not far along with their college planning at the completion of high school (Castleman and Page 2015; 2016; Page, Castleman, and Meyer 2016).

These studies sent messages that reminded students about pre-matriculation steps during the summer after high school graduation, encouraged college freshmen to refile their FAFSA for sophomore year, and connected students with support from counselors. The Find the Fit intervention modified the content of the text messages to be appropriate for the milestones that students would face in the college application process and to remind students about application deadlines, financial aid resources, Find the Fit materials, and key pre-enrollment steps.

Concrete guidance on actionable steps. Find the Fit also incorporated key messages, which drew on studies as well as field best practices, to encourage students to:

- Apply to four or more colleges. Applying to more than one college significantly increases a student's likelihood of actually enrolling, as well as the selectivity of the college where the student enrolls (Pallais 2015; Smith 2013a). Of first-time, full-time freshmen who enroll in bachelor's degree-granting colleges, slightly more than 70 percent report that they applied to four or more colleges (Eagan et al. 2015). An emphasis was placed on having students apply to more selective colleges because of the relationship between the selectivity of college attended and education and career outcomes (Bound et al. 2010; Bowen et al. 2009; Dillon and Smith 2017; Horn and Carroll 2006; Howell and Pender 2016; Hoxby 2001; Smith 2013b; Witteveen and Attewell 2017).
- Complete the FAFSA by early spring of senior year. Completing the FAFSA early opens up the most opportunities for institutional and state aid (Cannon and Goldrick-Rab 2016; Feeney and Heroff 2013); it also gives students accurate information about real costs before they must make a decision about which school to attend.
- Examine student outcomes at different colleges to which they are likely admissible. Providing guidance on selecting colleges that have high graduation rates and are a match with students' academic qualifications is important to increasing students' chances of completing a four-year degree (Roderick et al. 2008).

Previous research suggests that low-income students often have limited access to information about the importance of the steps above (Bowen et al. 2009), yet providing students with this type of guidance can result in higher rates of enrollment in selective, four-year colleges and in enrollment shifts from two-year colleges to four-year colleges (Avery 2013).

## A. 2 Details about Find the Fit Components

## A.2.1 Student Materials

The Find the Fit student materials consisted of 13 handouts and activities packaged in a personalized student folder for each rising senior at treatment group Upward Bound projects. Exhibit A. 1 includes a description of Find the Fit and maps its content to the three key challenges-logistics of applying, financial hurdles, and limited expectations-that many low-income students and first-generation college goers face in finding and enrolling in a college that is a good fit for them.

Folders were mailed to the projects in June 2015, the summer after students’ junior year; projects were asked to distribute the folders to their students. Projects also received copies of a letter and parent-focused timeline that they could distribute to share Find the Fit information with parents.

Exhibit A.1: Description of Find the Fit Content and Mapping to Challenges Addressed

| Component |
| :--- | :--- | :--- | :--- |
| Student |
| Materials |$\quad$| Shuffe, Sort and Stack activity to prompt thinking about a variety of factors, and which |
| :--- |
| students value, in considering colleges |$\quad$ E

Key: $L=$ logistics of applying; $F=$ financial hurdles; $E=$ limited expectations.

## A.2.2 Messaging Program

Find the Fit included a series of programmed messages sent to treatment group Upward Bound students to remind them about key steps in the college search, application, and enrollment processes. The messages were sent via a web-based text messaging platform provided by the vendor Signal Vine. Treatment group projects received a Signal Vine account free of charge as part of their participation in Find the Fit. Signal Vine's platform allowed messages to be programmed and semi-customized, and
allowed advisors to send response messages to students via the platform. When students' cell phone numbers were unavailable, students were sent the messages through email instead.

The messages began at the end of students' junior year and continued until the end of students' senior year, or through the summer after students' high school graduation for students in the 65 treatment projects with a summer bridge program. The messages were automatically sent out at important time points (e.g., prior to college application due dates); students received about two programmed messages per month. Message content was adapted from previous text message programs (e.g., Castleman and Page 2015; 2016).

Exhibit A. 2 provides a sample of the messages sent to students. The semi-customized nature of the platform allowed the messages to include each student's first name, advisor's name, and information specific to the student's college plans. For example, students who provided a list of colleges they planned to apply to (either through the baseline student survey in spring 2015 or in response to the October 2015 programmed message asking them about their application plans) were automatically sent deadline reminders several weeks before each college's application was due. Exhibit A. 3 describes the full set of programmed messages, including when messages were sent, the messages' focus, and the Find the Fit student materials mentioned in certain messages.

## Exhibit A.2: Sample Text Messages

Hi Saral Do u have a list of
colleges on ur My College Search
sheet? Use it to compare other Fit
Factors and narrow down ur list.
Talk to ur advisor if u need help.

Remember - as an Upward Bound
student, u can waive many college
application fees! Use this form http://bit.|y/ZSKdal. Talk to ur advisor if u have questions.

Hi Camilla! Have u completed ur FAFSA? Do it before March 15 to get the most financial aid possible! https://fafsa.ed.gov/Txt 'HELP' if u need FAFSA help!


Exhibit A.3: Find the Fit Programmed Messages

| Time Frame | Focus of Message | Student Material(s) Referenced |
| :--- | :--- | :--- |
| May 2015 | Introductory message |  |
| June 2015 | Reminder to use college search tools (links to tools included) | My College Search |
| July 2015 | Reminder to begin college application list | My College Search |
| August 2015 | Encouragement to compare college costs after financial aid and to <br> research campus support services | My SCOOP Sheet for College; <br> Discover Campus Support <br> Services |
| September 2015 | Reminder to finalize college application list | My College Search; My SCOOP <br> Sheet for College |
| October 2015 | Request for students' college application list |  |
| November 2015 | Reminders to use application fee waivers and to check whether <br> colleges accept the Common Application | The Common Application; <br> College Admission Application |
| January 2016 2015-16 | Automatically timed application deadline reminders; generic <br> deadline reminder on December 15 for students who did not <br> provide a college application list | Fee Waivers |

${ }^{\text {a }}$ Sent in May 2016 to students in projects without a summer bridge program.

## A.2.3 Training Webinars for Advisors

Find the Fit included three live webinar trainings for Upward Bound advisors in treatment projects; all staff who provided college advising to rising seniors in the projects were encouraged to attend. Each webinar was about 1 to 1.5 hours and was offered at four different times in April or May 2015 so that advisors could attend at a date and time convenient for them. The webinars were also recorded and made available online. Each webinar, briefly described below, was led by a facilitator with extensive experience working to promote college access or improve educational success among low-income or minority students.

Webinar 1 - Why We Want to Find the Fit. The goal of the first webinar was to support advisors in addressing students' beliefs about academic match and college cost, thereby enabling students to make wise choices about where to apply and ultimately attend college. This webinar provided an overview of the webinar series; described the tools and materials that Find the Fit was providing; explained that Find the Fit would enhance what advisors were already doing, and that a focus on college "fit" and academic
match could improve their students' outcomes; and demonstrated how advisors could use some of the Find the Fit student materials.

## Webinar 2 - Breaking Beyond the Familiar: Empowering Students to Succeed in New

Environments. The goal of the second webinar was to address students' potentially limited expectations about where they could be successful at college. This webinar focused on how to recognize students' beliefs or misconceptions that might affect the extent of their college search; how to use an activity shown to improve both students' perceptions that they can be successful and their actual academic success in unfamiliar situations; and how to take advantage of other resources that can increase students' comfort levels in applying to unfamiliar colleges (e.g., virtual tours, TRIO Student Support Services programs).

Webinar 3 - Making It Manageable: Timing, Tips, and Tools to Meet Logistical Challenges. The goal of the final webinar was to provide advisors with additional tools to motivate students to go through the logistics of selecting and applying to a range of colleges. The webinar summarized research on why applying to more colleges increases students’ likelihood of enrolling; discussed important planning steps that students should take to make sure they stay on track throughout the entire application process; provided an overview of how text messaging can successfully nudge students to complete college application and enrollment tasks; and described the Find the Fit messaging program.

## Appendix B. Methodological Details

This appendix provides additional details on the study sample, data sources and measures, analytic methods, and power analyses to complement the information provided in Chapter 1, Section 1.4.

## B. 1 Study Sample

## B.1.1 Study Sample Is Similar to Upward Bound Population

As described in Section 1.4.2, the study sample consisted of 194 Upward Bound projects, whose characteristics were similar to those of the population of eligible Upward Bound projects (Exhibit B.1).

Exhibit B.1: Characteristics of Study Projects versus All Eligible Upward Bound Projects

| Project Characteristic | Study Projects | All Eligible Projects <br> (\%) |
| :---: | :---: | :---: |
| Host Institution Type |  |  |
| Four-year college | 56.7 | 58.5 |
| Two-year college | 31.4 | 31.3 |
| Not a college (Other) | 11.9 | 10.1 |
| Locale |  |  |
| City | 49.0 | 48.8 |
| Suburb | 17.0 | 19.7 |
| Town | 22.2 | 22.7 |
| Rural | 11.9 | 8.7 |
| Region |  |  |
| Northeast | 14.4 | 14.5 |
| Midwest | 27.3 | 22.5 |
| South | 37.1 | 36.8 |
| West | 19.6 | 23.6 |
| Other | 1.5 | 2.6 |
| Minority-Serving Institution Host |  |  |
| Yes | 22.2 | 28.2 |
| No | 77.8 | 71.8 |
| Project Size | (Mean) | (Mean) |
| Number of students | 73.1 | 73.2 |

Note: Sample = 194 Upward Bound projects in the study and 702 total Upward Bound projects.
Source: APR 2014-15; IPEDS 2015-16.

The 4,443 students in the study were also similar to the population of students in all eligible Upward Bound projects (Exhibit B.2). ${ }^{1}$

## Exhibit B.2: Characteristics of Students in Study Projects versus Students in All Eligible Upward Bound Projects

$\left.\left.\begin{array}{|lcc|}\hline & & \text { Students in Study Projects } \\ \text { (\%) }\end{array}\right) \begin{array}{c}\text { Students in All Eligible } \\ \text { Projects }\end{array}\right)$

AP is Advanced Placement. IB is International Baccalaureate. GPA is grade point average.
${ }^{\text {a }}$ College entrance exam scores were available only for students in study projects.
Note: Sample $=4,443$ students in study projects and 18,487 same-grade students in all eligible Upward Bound projects.
Source: APR 2012-13 to 2014-15; college entrance exam data 2015.

1 An additional 11 students were served by the projects in the study but were not included in the study because their parents opted to exclude them from the study prior to random assignment; 6 of these students were in projects later assigned to the treatment group and 5 were in projects later assigned to the control group.

## B.1.2 Several Steps Occurred from Initial Recruited Sample to Creation of Analytic Samples

Exhibit B. 3 diagrams the flow of study participants from the recruited sample to the analytic samples for the outcomes investigated in this report.

Exhibit B.3: Flow of Projects and Students from Recruitment to Analytic Samples


## B.1.3 Random Assignment Was Conducted within Groups Based on Important Characteristics

In spring 2015, after the 194 Upward Bound projects and their 4,443 students had been identified and recruited, the projects were randomly assigned. The projects were first divided into blocks-created by the combination of their host institution type (four-year or not) and their geographic locale (city, suburb, town, or rural). Then within each of these eight blocks, projects were randomly assigned to either the treatment or the control group. Blocks were used both to prevent a bad draw by chance (e.g., more treatment group projects in urban settings than control group projects) and to enhance the study's ability to examine impacts of Find the Fit for key subgroups of Upward Bound projects.

Randomization within these blocks, coupled with analytic models that include terms for the blocks, means that treatment-control comparisons are made within host institution type and locale, and that the overall impact is a precision-weighted mean of the within-block impact estimates. This ensures, for example, that outcomes for treatment projects hosted by two-year colleges located in urban settings are compared with outcomes for control projects with the same type of host institution and locale.

Because some of the eight randomization blocks had odd numbers of projects, there were two blocks where randomization resulted in having more treatment than control projects within the block. Exhibit B. 4 displays the number of treatment and control projects in each randomization block.

Exhibit B.4: Host Institution Type and Locale of Study Projects, by Random Assignment Status
$\left.\begin{array}{|lccc|}\hline & \begin{array}{c}\text { Treatment Group } \\ \text { Projects }\end{array} & \begin{array}{c}\text { Control Group } \\ \text { Projects }\end{array} & \text { All Projects }\end{array}\right)$

Note: Sample = 98 treatment group projects and 96 control group projects.
Source: IPEDS 2015-16.
As part of the recruitment strategy, projects that volunteered were all promised the opportunity to receive Find the Fit, though in two different "waves" determined randomly. Only projects assigned to Wave 1 (the treatment group) had access to Find the Fit to integrate into their regular Upward Bound services for their 2015-16 seniors during the 2015-16 school year (the study period). Projects in Wave 2 (the control group) continued to provide their regular services to Upward Bound students without access to Find the Fit; these projects received access to Find the Fit only after seniors in that year had left Upward Bound and the study concluded; this allowed them to use Find the Fit with subsequent cohorts of students, if desired. Thus, there is little possibility that students in control projects experienced Find the Fit during the study period.

During the study period, students in both treatment and control group projects continued to receive Upward Bound's existing services (e.g., college application assistance, course-taking guidance, counseling on applying for financial aid) as described in Exhibit 1.2.

## B.1.4 Treatment and Control Groups Were Equivalent at Baseline

There were no statistically significant differences between treatment group and control group projects on any of the project characteristics the study examined (Exhibit B.5). The percentages of projects hosted by four-year colleges, two-year colleges, and institutions other than colleges were similar for treatment and control group projects, as were the percentages of projects located in the different locales (e.g., cities, towns) and in each region of the United States.

The largest difference between treatment and control group projects was that treatment group projects were 9 percentage points more likely to be hosted by a minority-serving institution; however, this difference was not statistically significant.

Exhibit B.5: Characteristics of Study Projects, by Random Assignment Status
\(\left.$$
\begin{array}{|lcccc|}\hline & \begin{array}{c}\text { Treatment Group } \\
\text { Projects } \\
\text { Project Characteristic }\end{array} & \begin{array}{c}\text { Control Group } \\
\text { Projects } \\
(\%)\end{array}
$$ \& \begin{array}{c}Estimated <br>

Difference\end{array} \& p-value\end{array}\right]\)| Host Institution Type |
| :--- |

Note: Sample = 98 treatment group projects and 96 control group projects.
Source: IPEDS 2015-16.

Across the 194 projects, 4,443 students participated in the study: 2,336 students from treatment group projects and 2,107 students from control group projects. There were no statistically significant differences between treatment and control group students on any of the baseline characteristics used as covariates in the impact analyses (Exhibit B.6). Some 64 percent of both treatment and control group students were female; 39 percent were Black, non-Hispanic; and 88 percent were from a low-income household. About one-third of both treatment and control group students had taken one or more AP or IB courses, and their average unweighted cumulative GPAs were similar: 3.1 for treatment group students and 3.0 for control group students.

Additional information on baseline equivalence for the analytic samples used for impact analyses is presented in Section B.2.1 (Exhibit B.9).

Exhibit B.6: Characteristics of Students in the Study, by Random Assignment Status

|  | Treatment Group <br> Students <br> (\%) | Control Group <br> Students <br> $(\%)$ | Estimated <br> Difference | p-value |
| :--- | :---: | :---: | :---: | :---: |

AP is Advanced Placement. IB is International Baccalaureate. GPA is grade point average.
Notes: Sample $=2,318$ treatment group students and 2,102 control group students for gender, 2,311 treatment group students and 2,099 control group students for race/ethnicity, 2,310 treatment group students and 2,088 control group students for low-income household, 2,317 treatment group students and 2,101 control group students for first generation to college, 2,305 treatment group students and 2,085 control group students for taken AP/IB courses, 1,969 treatment group students and 1,855 control group students for unweighted cumulative GPA, and 1,745 treatment group students and 1,499 control group students for college entrance exam. The treatment group percentage and estimated difference are adjusted for the blocked random assignment design and the clustering of students within Upward Bound projects.
Source: APR 2012-13 to 2014-15; college entrance exam score data 2015; baseline student survey 2015.

## B. 2 Data Sources and Measures

Section 1.4.4 describes the data sources used in the study. Exhibit B. 7 presents the response rates for each of the study surveys. The study began following students in spring 2015 (at the end of their junior year of high school and when they completed the baseline survey) through their senior year in 2015-16, during which time the treatment group projects had access to Find the Fit. College-going outcomes will be measured in the first two years after students' expected high school graduation (2016-17, 2017-18).

Exhibit B.7: Target Sample and Response Rate for Surveys

| Study Survey | Target Sample | Response Rate (\%) |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Overall | Treatment | Control |
| Baseline student survey (pre-Find the Fit) | 4,443 students | 80.6 | 80.6 | 80.7 |
| Follow-up student survey | 4,443 students | 81.7 | 82.2 | 81.2 |
| Project survey ${ }^{\text {a }}$ | 194 project directors | 94.8 | 95.9 | 93.8 |

a Project directors were asked to complete the survey themselves or assign it to the staff person who was most familiar with their project's advising. About 63 percent of project surveys were completed by project directors.

## B.2.1 Interim Outcome Measures

Exhibit 1.9, in Chapter 1, defines each outcome measure and lists the data source used to construct it. Exhibit B. 8 provides information on how each outcome was constructed, as well as missing data rates for each. Three of the four outcome measures-whether students applied to four or more colleges, the selectivity levels of the colleges to which students applied, and the importance students place on academic quality-were constructed from items in the follow-up student survey, which was completed by more than 80 percent of both treatment and control group students.

The fourth outcome, FAFSA completion by March 15, came from Federal Student Aid (FSA) office records. There were no missing data on the outcome of FAFSA completion because students who did not have a record at FSA are assumed to not have completed the FAFSA; thus, the sample used for impact analyses for that outcome was the full sample.

Exhibit B.8: Outcome Measures Construction and Percentage of Students Missing Data

| Outcome | Construction | Percentage of Students Missing Data |  |
| :---: | :---: | :---: | :---: |
|  |  | Treatment Group | Control Group |
| Applied to four or more colleges | 1 = Student lists four or more colleges when asked the specific colleges s/he applied to <br> $0=$ Student lists three or fewer colleges when asked the specific colleges s/he applied to | 17.8 | 18.8 |
| Selectivity level of colleges to which student applied |  |  |  |
| Most competitive | 1 = At least one of the colleges the student reports having applied to has a Barron's selectivity level of "most competitive" <br> $0=$ None of the colleges the student reports having applied to has a Barron's selectivity level of "most competitive," or student does not report having applied to any college | 17.8 | 18.8 |
| At least highly competitive | 1 = At least one of the colleges student reports having applied to has a Barron's selectivity level of "highly competitive" or higher <br> $0=$ None of the colleges student reports having applied to has a Barron's selectivity level of "highly competitive" or higher, or student does not report having applied to any college | 17.8 | 18.8 |
| At least very competitive | 1 = At least one of the colleges the student reports having applied to has a Barron's selectivity level of "very competitive" or higher <br> $0=$ None of the colleges student reports having applied to has a Barron's selectivity level of "very competitive" or higher, or student does not report having applied to any college | 17.8 | 18.8 |
| At least competitive | 1 = At least one of the colleges the student reports having applied to has a Barron's selectivity level of "competitive" or higher <br> $0=$ None of the colleges student reports having applied to has a Barron's selectivity level of "competitive" or higher, or student does not report having applied to any college | 17.8 | 18.8 |
| At least somewhat competitive | 1 = At least one of the colleges the student reports having applied to has a Barron's selectivity level of "somewhat competitive" or higher <br> $0=$ None of the colleges student reports having applied to has a Barron's selectivity level of "somewhat competitive" or higher, or the student does not report having applied to any college | 17.8 | 18.8 |
| Any four-year college | 1 = At least one of the colleges the student reports having applied to is a four-year college <br> $0=$ None of the colleges the student reports having applied to is a four-year college, or student does not report having applied to any college | 17.8 | 18.8 |

APPENDIX B: METHODOLOGICAL DETAILS

| Outcome | Construction | Percentage of Students Missing Data |  |
| :---: | :---: | :---: | :---: |
|  |  | Treatment Group | Control Group |
| Any college | 1 = Student lists at least one college s/he has applied to <br> $0=$ Student does not list any college s/he has applied to | 17.8 | 18.8 |
| Importance placed on college academic quality | 1 = Student rates academic quality or reputation as "very important" in choosing a college to attend after high school <br> $0=$ Student does not rate academic quality or reputation as "very important" | 17.8 | 18.8 |
| Completed FAFSA by March 15 | 1 = FAFSA completed and accepted by March 15,2016 <br> $0=$ FAFSA not completed and accepted by March 15, 2016 | 0.0 | 0.0 |

Note: Sample $=2,336$ treatment group students and 2,107 control group students.
Source: FSA 2016; follow-up student survey 2016; NCES-Barron's Admissions Competitiveness Index 2014.

Similarly, there were no statistically significant differences between the treatment and control group students used to analyze the impact of Find the Fit on the three outcomes constructed from the follow-up survey (Exhibit B.9).

Exhibit B.9: Baseline Equivalence in the Sample Used for Impact Analyses for Outcomes Constructed from Follow-Up Survey

| Student Characteristic | Treatment Group Students (\%) | Control Group Students (\%) | Estimated <br> Difference | $p$-value |
| :---: | :---: | :---: | :---: | :---: |
| Gender |  |  |  |  |
| Male | 34.1 | 35.4 | -1.3 | . 439 |
| Female | 65.9 | 64.6 | 1.3 | . 439 |
| Race/Ethnicity |  |  |  |  |
| Hispanic | 27.7 | 23.5 | 4.2 | . 353 |
| White, non-Hispanic | 23.0 | 26.1 | -3.0 | . 454 |
| Black, non-Hispanic | 36.4 | 36.7 | -0.4 | . 945 |
| Other, non-Hispanic | 12.9 | 13.7 | -0.9 | . 774 |
| Household Characteristics |  |  |  |  |
| Low-income household | 87.3 | 86.5 | 0.8 | . 594 |
| First generation to college | 91.0 | 92.0 | -0.9 | . 438 |
| Academic Characteristics |  |  |  |  |
| Taken one or more AP/IB courses | 38.5 | 33.8 | 4.6 | . 229 |
| Unweighted cumulative GPA | 3.1 (GPA) | 3.1 (GPA) | 0.0 | . 601 |
| College entrance exam | 882.7 (SAT score) | 873.1 (SAT score) | 9.6 | . 435 |

AP is Advanced Placement. IB is International Baccalaureate. GPA is grade point average.
Note: Sample $=1,913$ treatment group students and 1,707 control group students for gender, 1,909 treatment group students and 1,704 control group students for race/ethnicity, 1,905 treatment group students and 1,694 control group students for low-income household, 1,912 treatment group students and 1,706 control group students for first generation to college, 1,900 treatment group students and 1,691 control group students for taken AP/IB courses, 1,623 treatment group students and 1,501 control group students for unweighted cumulative GPA, and 1,451 treatment group students and 1,213 control group students for college entrance exam. The outcomes constructed from the survey are Applied to Four or More Colleges, Selectivity Level of Colleges to Which Students Applied, and Importance of Academic Quality. Treatment group percentage and estimated difference are adjusted for the blocked random assignment design and the clustering of students within Upward Bound projects. See Exhibit B. 12 for additional details on missing baseline data.
Source: APR 2012-13 to 2014-15; college entrance exam score data 2015; baseline student survey 2015.

## B.2.2 Measures of Find the Fit Implementation and College Advising

Exhibit 1.10, in Chapter 1, describes the measures used to characterize the implementation of Find the Fit in treatment group projects, as well as the college advising that treatment and control group students received from their Upward Bound project. Exhibit B. 10 provides additional detail on how these measures were constructed and on rates of missing data for each. Though the college advising measures were collected from both treatment and control group students, the implementation measures were relevant only for treatment group projects.

Exhibit B.10: Implementation and College Advising Measures Construction and Missing Data

| Measure | Construction | Percentage of Students Missing Data |  |
| :---: | :---: | :---: | :---: |
|  |  | Treatment Group | Control Group |
| Implementation of Find the Fit |  |  |  |
| Use of student materials ${ }^{\text {a }}$ | 1 = Treatment group project reports using particular material (e.g., My College Planner) with 2015-16 seniors $0=$ Treatment group project does not report using particular material with 2015-16 seniors | $4.1{ }^{\text {a }}$ | n/a |
| Number of student materials useda | Number of Find the Fit materials treatment group project reports using with 2015-16 seniors | $4.1{ }^{\text {a }}$ | n/a |
| Number of students sent messages ${ }^{\text {a }}$ | Number of 2015-16 seniors in the treatment group project who were sent any Find the Fit text or email messages | $0.0{ }^{\text {a }}$ | n/a |
| Date through which students were sent messages ${ }^{\text {a }}$ | Period through which student was sent messages, calculated using dates on which student was sent programmed text messages or email messages | $0.0{ }^{\text {a }}$ | n/a |
| Number of webinars attended ${ }^{\text {a }}$ | Number of training webinars attended by any staff from the treatment group project | $0.0{ }^{\text {a }}$ | n/a |
| College Advising Received by Students |  |  |  |
| Encouraged student to consider net cost | 1 = Student reports Upward Bound staff encouraged him/her to consider the cost of college after scholarships, grants, and financial aid are taken into account "a lot" in deciding where to apply to college $0=$ Student does not report Upward Bound staff encouraged him/her to consider this factor "a lot" | 18.2 | 19.2 |
| Encouraged student to consider college match | 1 = Student reports Upward Bound staff encouraged him/her to consider how well his/her entrance exam scores and GPA match with average student entrance exam scores and GPA at the college "a lot" in deciding where to apply to college <br> $0=$ Student does not report Upward Bound staff encouraged him/her to consider this factor "a lot" | 22.3 | 22.8 |
| Encouraged student to consider graduation/employment rates | 1 = Student reports Upward Bound staff encouraged him/her to consider the college's graduation rate or employment rate "a lot" in deciding where to apply to college <br> 0 = Student does not report Upward Bound staff encouraged him/her to consider this factor "a lot" | 22.1 | 22.7 |
| Encouraged student to think about ability to adapt to college | 1 = Student reports Upward Bound staff encouraged him/her to consider his/her ability to adjust to the social and academic challenges of college "a lot" in deciding where to apply to college <br> $0=$ Student does not report Upward Bound staff encouraged him/her to consider this factor "a lot" | 18.8 | 19.4 |
| Discussed all six milestones with advisor | 1 = Student reports Upward Bound staff discussed each of the following milestones with him/her: (1) how to choose colleges to apply to, (2) admissions requirements for different colleges, (3) timelines for applying to college, (4) ways to prepare for the SAT/ACT, (5) how to complete the Common Application, (6) how to complete the FAFSA <br> $0=$ Student does not report Upward Bound staff discussed each milestone with him/her | 19.1 | 20.0 |

APPENDIX B: METHODOLOGICAL DETAILS

| Measure | Construction | Percentage of Students Missing Data |  |
| :---: | :---: | :---: | :---: |
|  |  | Treatment Group | Control Group |
| Encouraged student to apply to four or more colleges | 1 = Student reports Upward Bound staff recommended s/he apply to a certain number of colleges, and that number was four or more <br> 0 = Student does not report Upward Bound staff recommended s/he apply to four or more colleges | 24.1 | 24.4 |
| Encouraged student to complete the FAFSA by March 15 | 1 = Student reports Upward Bound staff encouraged him/her to complete the FAFSA by a certain date, and that date was March 15 of his/her senior year or earlier <br> $0=$ Student does not report Upward Bound staff encouraged him/her to complete the FAFSA by March 15 | 18.5 | 19.5 |

${ }^{\text {a }}$ Because these are measures of implementation of Find the Fit, they are relevant only for the treatment group.
Note: Sample $=98$ treatment group projects and 2,336 treatment group students for Find the Fit implementation measures, and 2,336 treatment group students and 2,107 control group students for measures of college advising.
Source: Project survey 2016; follow-up student survey 2016; intervention monitoring data 2015-16.

## B.2.3 Student and Project Characteristics

The characteristics of the students and Upward Bound projects that participated in this study are described throughout the report. The specific characteristics used to describe participating students are: gender, race/ethnicity, first generation to college, low-income household, college entrance exam score, GPA, and AP/IB course taking. Measures for most of these characteristics come from the 2015 Annual Performance Report (APR) data, which were submitted by Upward Bound projects to the program office and contained data for every student who entered the project. When missing from the APR, data were taken from the baseline student survey for some characteristics: gender, race/ethnicity, and first generation to college. For students' college entrance exam scores, students' highest score on the SAT or ACT through spring 2015 was used (or their PSAT or PLAN score was substituted if SAT and ACT scores were not available).

Fortunately, data from the APR and the baseline student survey were very well aligned. Exhibit B. 11 shows the congruence of data from the two sources when data were available in both sources. For measures available in both the APR and baseline student surveys, the data matched for 89 to 98 percent of students.

Exhibit B.11: Congruence between Annual Performance Report and Baseline Student Survey Data

|  | Percentage of Students Missing Data |  |  |  | Number of <br> Students in |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Measure | APR | Baseline <br> Survey | Both |  | Percentage <br> Both Sources |
| Congruent |  |  |  |  |  |

Notes: Sample $=4,443$ students for percentage missing; only students with non-missing values in both the APR and baseline student survey are used to calculate the percentage congruent between the two data sources.
Source: APR 2014-15; baseline student survey 2015.
Exhibit B. 12 shows the data source, variable coding, and percentage of missing data for each of the student characteristics used in the analytic models, as well as for the two project characteristics that are used-host institution type and locale.

Exhibit B.12: Student and Project Baseline Characteristics Construction and Missing Data

| Measure | Data Source | Coding | Percentage of Students Missing Data |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Treatment Group | Control Group |
| Baseline Student Characteristic |  |  |  |  |
| Gender | APR; baseline student survey | $\begin{aligned} & 1=\text { Female } \\ & 0=\text { Male } \end{aligned}$ | 0.8 | 0.2 |
| Race/ethnicity | APR; baseline student survey | Four categories: <br> 1 = Hispanic <br> 2 = White, non-Hispanic <br> 3 = Black, non-Hispanic <br> 4 = Other/multiracial, non-Hispanic | 1.1 | 0.4 |
| First generation to college | APR; baseline student survey | 1 = No parent in the household received a bachelor's degree <br> $0=$ At least one parent in the household received a bachelor's degree | 0.8 | 0.3 |
| Low-income household | APR | 1= Upward Bound eligibility criteria indicate that household is low income $0=$ Upward Bound eligibility criteria do not indicate that household is low income | 1.1 | 0.9 |
| GPA | APR | Unweighted grade point average | 15.7 | 12.0 |
| Completed AP/IB course | APR | 1 = Completed an AP or IB course or both $0=$ Has not completed an AP or IB course | 1.3 | 1.0 |
| College entrance exam score | College Board (SAT) or ACT | Highest score on SAT or ACT, or PSAT or PLAN if no SAT or ACT score available; all scores converted to SAT scale | 25.3 | 28.9 |
| Baseline Project Characteristic |  |  |  |  |
| Host institution type | IPEDS | Three categories: <br> 3 = Four-year college <br> 2 = Two-year college <br> 1 = Other | 0.0 | 0.0 |
| Locale | IPEDS | Four categories: $\begin{aligned} & 1=\text { City } \\ & 2=\text { Suburb } \\ & 3=\text { Town } \\ & 4=\text { Rural } \end{aligned}$ | 0.0 | 0.0 |

## APPENDIX B: METHODOLOGICAL DETAILS

AP is Advanced Placement. IB is International Baccalaureate. GPA is grade point average.
Note: Sample $=2,336$ treatment group students and 2,107 control group students for student characteristics, and 98 treatment group projects and 96 control group projects for project characteristics. Source: APR 2012-13 \& 2014-15; baseline student survey 2015; college entrance exam score data 2015; IPEDS 2015-16.

All seven student characteristics are used as covariates in the analytic models to take into account possible existing variation between students in the treatment and control group projects. The analytic models also account for host institution type and locale via the randomization blocks discussed in B.1.3. Several of these student and project characteristics are also used to define subgroups of policy and program interest based on the rationale described in Exhibit 1.11.

For subgroup analyses based on students' college entrance exam scores, students’ scores were coded into four categories based on quartiles from the nationally representative Education Longitudinal Study of 2002, providing a point of reference for these scores beyond the study sample. Scores for the quartiles were 400-850, 860-980, 990-1130, and 1140-1600.

## B. 3 Analytic Methods

## B.3.1 Overall Impacts

Because students are clustered within Upward Bound projects, the effect of Find the Fit was analyzed using two-level hierarchical linear models with students (level-1) nested in projects (level-2). ${ }^{2}$ The level-1 models include the seven baseline student characteristics described above as covariates, and the level-2 models include indicators for treatment status and randomization block.

A two-level linear regression model was estimated for each interim outcome, as well as for student reports of college advising in Upward Bound. Although all of the outcomes are binary, linear models with conventional standard errors were used instead of non-linear models (e.g., logit models). This approach was motivated by the following: linear models are simpler to estimate and to interpret, yield unbiased estimates of the intervention impact, yield standard error estimates that are approximately correct even when the underlying data-generating process is nonlinear (Judkins and Porter 2015), and have been used by many random assignment evaluations in education. ${ }^{3}$

The regression model's level-1 (student-level) equation is:
(1) $Y_{i j}=\beta_{0 j}+\sum_{a=1}^{A} \beta_{a j}\left(\right.$ BaselineStudentCharacteristics $\left._{i j}\right)+\varepsilon_{i j}$
where $i$ indexes students and $j$ indexes projects. $Y_{i j}$ is the value of the outcome (e.g., FAFSA completion by March 15) for the $i^{\text {th }}$ student in the $j^{\text {th }}$ Upward Bound project; $\beta_{0 j}$ is the covariate-adjusted mean value ${ }^{4}$ of the outcome in project $j$; BaselineStudentCharacteristics $_{i j}$ is a set of student baseline characteristics;

[^0]$\beta_{a j}$ represents the effects of the baseline student characteristics on the outcome; and $\varepsilon_{i j}$ is random error, assumed to be identically and independently distributed.

The regression model's level-2 (project-level) equation is:
(2) $\beta_{0 j}=\gamma_{00}+\gamma_{01}$ Treatment $_{j}+\sum_{n=2}^{8} \gamma_{0 n}\left(\right.$ RA_Blocks $\left._{n j}\right)+\mu_{o j}$
where Treatment $_{j}$ equals 1 for the treatment group and 0 for the control group and $R A_{-} B l o c k s_{n j}$ includes seven dummy variables representing the eight randomization blocks. The impact of Find the Fit is given by the parameter $\gamma_{01}$. For binary variables, $\gamma_{01}$ is the estimated difference between the proportion of students in the treatment group and the proportion of students in the control group, who had a value of 1 for the outcome variable - for example, students who applied to four or more colleges. To measure the mean difference in percentage points, the estimate is multiplied times 100 . For example, an estimate of .092 for $\gamma_{01}$ can be multiplied times $100(.092 \times 100=9.2)$, indicating that the percentage of students in the treatment group who apply to four or more colleges is 9.2 percentage points higher than the percentage in the control group. To test for impacts (i.e., testing the null hypothesis that $\gamma_{01}$ is zero), the study conducted two-tailed $t$-tests at the 5 percent level.

## B.3.2 Impacts within Subgroup

In addition to examining the average impacts of Find the Fit on student outcomes and student reports of college advising, the study also investigated the impact of the intervention within subgroups defined by student and project characteristics. Models both (a) estimated the impact of Find the Fit for each of the subgroups and (b) tested for differences in impacts among categories of a subgroup indicator. Both types of results were reported; for example, impact estimates were reported for both male and female students, and the result of a test of whether the magnitude of impact for male students was different from the magnitude of impact for female students was also reported.

All tests were two-tailed tests and used an alpha-level criterion of $p<.05$. Because the study was designed to detect impacts for the full sample, and not to detect differences in impacts between subgroups, a difference in impacts between subgroups is likely only to be detected when the true difference is large. Because these tests are exploratory, multiple comparison adjustments were not made. It is important to note that with this approach even if there were no significant differences we might expect to detect at least eight significant differences across the 160 tests conducted (10 outcomes and 16 subgroup categories).

Casewise deletion was used for missing data on outcome measures, whereas the dummy variable method ${ }^{5}$ was used to address missing values for baseline student characteristics. These methods are consistent with the recommendations in the IES technical methods report What to Do When Data Are Missing in Group Randomized Controlled Trials (Puma et al. 2009) and allowable under standards of the What Works Clearinghouse ${ }^{\mathrm{TM}}$.

[^1]
## Student Subgroups

To address questions about impacts for subgroups of students, the subgroup variable (e.g., female) was added to the level-1 (student-level) equation. For example:
(3) $Y_{i j}=\beta_{0 j}+\beta_{1 j}\left(\right.$ Female $\left._{i j}\right)+\sum_{a=2}^{A} \beta_{a j}\left(\right.$ BaselineStudentCharacteristics $\left._{i j}\right)+\varepsilon_{i j}$

In addition, an interaction term between the subgroup variable and the treatment indicator was added to the level-2 (project-level) equation:
(4) $\beta_{0 j}=\gamma_{00}+\gamma_{01}$ Treatment $_{j}+\sum_{n=2}^{8} \gamma_{0 n}\left(\right.$ RA_Blocks $\left._{n j}\right)+\mu_{o j}$
(5) $\beta_{1 j}=\gamma_{10}+\gamma_{11}$ Treatment $_{j}$

In Equations 4 and 5 above, and using the indictor for female as an example subgroup indicator, $\gamma_{01}$ is the treatment impact for males, $\gamma_{01}+\gamma_{11}$ is the treatment impact for females, and $\gamma_{11}$ is the difference in the treatment impact between students in the two subgroups (i.e., students who are female and students who are not).

## Project Subgroups

To address questions about impacts for subgroups of Upward Bound projects, the subgroup variable (e.g., host institution is in a rural locale) was added to the regression model as an interaction term with the treatment variable.
(6) $\beta_{0 j}=\gamma_{00}+\gamma_{01}$ Treatment $_{j}+\sum_{n=2}^{8} \gamma_{0 n}\left(\right.$ RA_Blocks $\left._{n j}\right)+\gamma_{09}$ RuralHostInst $_{j} *$ Trt $_{j}+\mu_{o j}$

In Equation 6, $\gamma_{01}$ is the impact for non-rural host institutions, $\gamma_{01}+\gamma_{09}$ is the impact for rural host institutions, and $\gamma_{09}$ is the difference in impacts between projects in the two subgroups (i.e., projects hosted by rural and non-rural institutions). There is no main effect term for RuralHostInst because that categorization is captured in the block dummies.

## B.3.3 Sensitivity Analyses

Sensitivity analyses were conducted to examine the robustness of the findings for overall impacts with different model specifications, as follows:

- Logistic regression models were estimated because logistic, rather than linear, regression is commonly used for binary outcomes.
- A heteroscedasticity adjustment was included to further test the sensitivity of using linear models to estimate impacts for binary outcomes.
- Models were re-estimated without covariate adjustment because randomization should yield treatment and control groups that are equivalent on both observed and unobserved characteristics, making covariate adjustment unnecessary. ${ }^{6}$

[^2]- Nonresponse weights were included for the interim outcomes drawn from the student follow-up survey in order to assess the sensitivity of findings to survey nonresponse. ${ }^{7}$

Findings from the sensitivity analyses were similar to findings from the main linear regression analysis (see Appendix C).

## B.3.4 Variation by Implementation Levels

The study explored whether impacts on each of the four interim outcomes varied by projects' levels of implementation of Find the Fit defined as low, moderate and high. As described in Chapter 3, treatment group projects were categorized as high implementers if they implemented 75 percent or more of each Find the Fit component (student materials, text messages, or training webinars for advisors); moderate implementers if they implemented more than a quarter but not necessarily 75 percent of each component; and low implementers if they implemented less than 25 percent of any one Find the Fit component. For this analysis, implementation levels for the control group projects were estimated based on the relationship between project characteristics and the observed implementation level among treatment projects. Known baseline characteristics of control projects were used to predict whether the projects would be high, moderate, or low implementers, and the predicted implementation level was used for the subgroup analysis. Similar to the other subgroup analyses (described in B.3.2), the models both: (a) estimated the impact of Find the Fit for each of the implementation levels; and (b) tested for differences in impacts among the levels. Treatment group percentage and impact are estimated using the study's regression model.

## B. 4 Power Analyses

The study was designed to detect a minimum effect of 5 percentage points on the study's primary outcome (i.e., college academic undermatch) based on a targeted number of 200 participating Upward Bound projects and with an 80 percent probability of detecting a statistically significant effect at the 5 percent level. The initial power analysis was based on specific assumptions about the number of students per project in the analytic sample, intraclass correlation, proportion of variance explained by covariates, and the success rate in the control group; the actual power of the study differed slightly. For example, the left panel of Exhibit B. 13 shows the design phase assumptions and expected minimum detectable effect (MDE), whereas the right panel shows the observed statistics and achieved MDE that the study, as conducted, had 80 percent power to detect in the Apply to Four of More Colleges outcome.

[^3]Exhibit B.13: Comparison of Design Assumptions and Actual Sample Statistics

|  | Design Phase Assumptions | Observed Statistics in Analytic <br> Sample for Apply to Four or More <br> Colleges |
| :--- | :---: | :---: |
| Number of projects | 200 | 194 |
| Proportion assigned to treatment group | .50 | .51 |
| Number of students per project | 16 | 19 |
| Intraclass correlation | 0.100 | 0.173 |
| Student-level R-squared | .080 | .071 |
| Project-level R-squared | .320 | .345 |
| Success rate in control group | .800 | .437 |
| Minimum Detectable Effect | $\mathbf{0 . 1 4 ~ S D ~ u n i t s , ~ o r ~}$ |  |
|  | $\mathbf{5}$ percentage points | $\mathbf{0 . 1 6 ~ S D ~ u n i t s , ~ o r ~}$ |
|  | $\mathbf{8 ~ p e r c e n t a g e ~ p o i n t s ~}$ |  |

SD is standard deviation.
The achieved MDEs for the interim outcomes ranged from 4 to 8 percentage points (Exhibit B.14). The higher achieved than expected MDEs for some of the interim outcomes primarily resulted from intraclass correlations that were higher than the assumptions made in the design phase and from success rates in the control group (e.g., the number of students who completed the FAFSA by March 15) that were lower than the assumptions made in the design phase.

## Exhibit B.14: Achieved Minimum Detectable Effects for Overall Sample for Interim Outcomes and College Advising Measures

| Variable | Achieved MDEs |
| :--- | :---: |
| Interim Outcome |  |
| Applied to four or more colleges | 8.1 |
| Selectivity level of colleges to which student applied: | 4.3 |
| Most competitive | 6.7 |
| At least highly competitive | 7.1 |
| At least very competitive | 7.7 |
| At least competitive | 7.6 |
| At least somewhat competitive | 6.7 |
| Any four-year college | 6.1 |
| Any college | 4.4 |
| Importance placed on academic quality | 7.8 |
| Completed the FAFSA by March 15 | 5.1 |
| College Advising Measure | 6.2 |
| Encouraged to consider net cost | 5.8 |
| Encouraged to consider college match | 5.6 |
| Encouraged to consider graduation/employment rates | 5.2 |
| Encouraged to think about ability to adapt to college | 8.3 |
| Discussed all six milestones with advisor | 7.0 |
| Encouraged to apply to four or more colleges |  |
| Encouraged to complete the FAFSA by March 15 |  |

Relative to the main analyses, the MDEs were larger for analyses with student and project subgroups, especially for subgroups with relatively few students, including the highest college entrance exam score quartile, non-college host institution, and rural host institution subgroups (Exhibit B. 15 and Exhibit B.16).

Exhibit B.15: Achieved Minimum Detectable Effects for Student and Project Subgroups for Three Interim Outcomes

|  | Applied to Four or More Colleges | Importance Placed on Academic Quality | Completed FAFSA by March 15 |
| :---: | :---: | :---: | :---: |
| Gender |  |  |  |
| Male | 10.0 | 6.8 | 9.2 |
| Female | 8.7 | 5.2 | 8.3 |
| Race/Ethnicity |  |  |  |
| Hispanic | 12.2 | 8.3 | 11.3 |
| White, non-Hispanic | 12.8 | 8.5 | 11.8 |
| Black, non-Hispanic | 11.0 | 7.0 | 10.3 |
| Other, non-Hispanic | 15.4 | 11.5 | 14.0 |
| College Entrance Exam Score Quartile |  |  |  |
| Highest quartile | 19.7 | 16.6 | 18.3 |
| Second quartile | 13.8 | 10.9 | 12.8 |
| Third quartile | 12.0 | 9.0 | 11.1 |
| Lowest quartile | 10.1 | 6.8 | 9.3 |
| Missing score | 11.1 | 7.8 | 10.2 |
| Host Institution Type |  |  |  |
| Four-year college | 10.6 | 5.7 | 10.3 |
| Two-year college | 14.7 | 8.5 | 14.3 |
| Other | 23.5 | 12.7 | 22.9 |
| Locale |  |  |  |
| City/suburb/town | 8.7 | 4.7 | 8.3 |
| Rural | 23.9 | 13.5 | 23.0 |

Exhibit B.16: Achieved Minimum Detectable Effects for Student and Project Subgroups for Selectivity Level of Colleges to which Students Applied

|  | Most <br> Competitive | At Least Highly <br> Competitive | At Least Very <br> Competitive | At Least <br> Competitive | At Least <br> Somewhat <br> Competitive | Any Four-Year <br> College |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Gender | 5.5 | 8.2 | 9.1 | 9.4 | 9.3 | Any College |

## Appendix C. Supplemental Information for Chapter 2

This appendix contains the underlying data used to generate the exhibits in Chapter 2, the chapter on Find the Fit's impacts on interim outcomes. The appendix also includes the results of sensitivity analyses conducted for the interim outcomes and described in Section B.3.3.

## C. 1 Applied to Four or More Colleges

Exhibit C.1: Impacts of Find the Fit on Whether Students Applied to Four or More Colleges, Overall and for Subgroups

|  | Treatment Group Students (\%) | Control Group Students (\%) | Impact | $p$-value ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Overall Impact |  |  |  |  |
|  | 53.0 | 43.7 | 9.2 | . 001 |
| Impact by Student Characteristic |  |  |  |  |
| Gender |  |  |  |  |
| Female | 55.2 | 46.3 | 8.9 | . 004 |
| Male | 49.1 | 39.1 | 10.1 | . 005 |
| F-test of difference ${ }^{\text {b }}$ | $p=.699$ |  |  |  |
| Race/Ethnicity |  |  |  |  |
| Hispanic | 56.6 | 44.5 | 12.1 | . 006 |
| White, non-Hispanic | 42.4 | 35.8 | 6.6 | . 150 |
| Black, non-Hispanic | 58.2 | 49.0 | 9.2 | . 020 |
| Other, non-Hispanic | 52.1 | 43.6 | 8.5 | . 122 |
| F-test of difference ${ }^{\text {b }}$ | $p=.789$ |  |  |  |
| College Entrance Exam Score Quartile |  |  |  |  |
| Highest quartile | 70.5 | 66.7 | 3.9 | . 584 |
| Second quartile | 66.3 | 52.6 | 13.7 | . 006 |
| Third quartile | 59.9 | 51.4 | 8.5 | . 047 |
| Lowest quartile | 50.5 | 40.5 | 10.0 | . 005 |
| Missing score | 42.7 | 34.8 | 7.9 | . 047 |
| F-test of difference ${ }^{\text {b }}$ | $p=.714$ |  |  |  |
| Impact by Project Characteristic |  |  |  |  |
| Host Institution Type |  |  |  |  |
| Four-year college | 51.5 | 45.2 | 6.3 | . 094 |
| Two-year college | 47.5 | 36.4 | 11.1 | . 034 |
| Other | 71.6 | 52.2 | 19.5 | . 020 |
| F-test of difference ${ }^{\text {b }}$ | $p=.329$ |  |  |  |
| Locale |  |  |  |  |
| Rural | 44.0 | 26.2 | 17.8 | . 037 |
| City/suburb/town | 54.1 | 46.0 | 8.1 | . 009 |
| F-test of difference ${ }^{\text {b }}$ | $p=.286$ |  |  |  |

${ }^{\text {a }} p$-values in this column are for tests of whether there was a statistically significant impact for the subgroup category indicated in the row.
${ }^{\mathrm{b}} p$-values in this row are for a test of whether impacts statistically differed between the categories of the subgroup indicated in the rows above. Note: Sample $=1,920$ treatment group students and 1,710 control group students for overall impact, 1,913 treatment group students and 1,707 control group students for gender, 1,909 treatment group students and 1,704 control group students for race/ethnicity, 1,920 treatment group students and 1,710 control group students for college entrance exam scores, 1,920 treatment group students and 1,710 control group students for host institution type, and 1,920 treatment group students and 1,710 control group students for locale. Percent represents the share of students who reported applying to four or more colleges. Treatment group percentage and impact are estimated using the study's regression model.
Source: Follow-up student survey 2016; APR 2014-15; college entrance exam score data 2015; IPEDS 2015-16; baseline student survey 2015.

Exhibit C.2: Sensitivity Analyses for Impact of Find the Fit on Whether Students Applied to Four or More Colleges

| Model | Treatment Group Students (\%) | Control Group Students (\%) | Impact | p-value |
| :---: | :---: | :---: | :---: | :---: |
| Linear regression (main model) | 53.0 | 43.7 | 9.2 | . 001 |
| Logistic regression | 53.4 | 43.7 | 9.7 | . 001 |
| Heteroscedasticity adjustment | 53.0 | 43.7 | 9.2 | . 002 |
| No covariates used in model | 54.4 | 43.7 | 10.6 | . 001 |
| Weighted | 52.7 | 43.7 | 8.9 | . 002 |

Notes: Sample =1,920 treatment group students and 1,710 control group students. Percent represents the share of students who reported applying to four or more colleges. Treatment group percentage and impact are estimated using the study's regression model.
Source: Follow-up student survey 2016.
Treatment group students reported applying to an average of 4.0 colleges, whereas control group students reported applying to an average of 3.5 colleges; the median for treatment and control group students was 4 and 3, respectively. Exhibit C. 3 shows the number of colleges to which treatment and control group students reported applying.

Exhibit C.3: Number of Colleges to which Students Reported Applying
\(\left.$$
\begin{array}{|lcc|}\hline & \text { Number of Colleges } & \begin{array}{c}\text { Treatment Group Students } \\
(\%)\end{array}\end{array}
$$ \begin{array}{c}Control Group Students <br>

(\%)\end{array}\right]\)

Note: Sample =1,920 treatment group students and 1,710 control group students.
Source: Follow-up student survey 2016.

## C. 2 Selectivity Level of Colleges to Which Students Applied

Exhibit C.4: Impact of Find the Fit on Selectivity Level of Colleges to which Students Applied

| Selectivity Level | Treatment Group Students (\%) | Control Group Students (\%) | Impact | $p$-value |
| :---: | :---: | :---: | :---: | :---: |
| Most competitive | 11.0 | 7.4 | 3.6 | . 018 |
| At least highly competitive | 24.9 | 17.4 | 7.6 | . 002 |
| At least very competitive | 48.1 | 37.8 | 10.3 | . 000 |
| At least competitive | 71.3 | 63.4 | 7.9 | . 004 |
| At least somewhat competitive | 73.7 | 65.8 | 7.8 | . 004 |
| Any four-year college | 75.9 | 70.7 | 5.2 | . 030 |
| Any college | 83.8 | 79.9 | 4.0 | . 067 |

Notes: Sample $=1,920$ treatment group students and 1,710 control group students. Treatment group percentage and impact are estimated using the study's regression model.
Percentage of students represents those who applied a college of at least a given selectivity level (e.g., at least a "very competitive" college includes applications to colleges at the two selectivity levels above "very competitive", "highly competitive" and "most competitive").
Source: Follow-up student survey 2016; NCES-Barron's Admissions Competitiveness Index 2014.

Exhibit C.5: Impact of Find the Fit on Selectivity Level of Colleges to which Students Applied, by Student Subgroup

| Selectivity Level <br> Subgroup | Treatment <br> Group Students <br> (\%) | Control Group <br> Students <br> (\%) | Impact | p-value $^{\text {a }}$ |
| :--- | :---: | :---: | :---: | :---: |

APPENDIX C: SUPPLEMENTAL INFORMATION FOR CHAPTER 2

| Selectivity Level Subgroup | Treatment Group Students (\%) | Control Group Students (\%) | Impact | $p$-value ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: |
| At Least Highly Competitive |  |  |  |  |
| Gender |  |  |  |  |
| Female | 24.6 | 16.3 | 8.3 | . 001 |
| Male | 25.7 | 19.4 | 6.3 | . 031 |
| F-test of difference ${ }^{\text {b }}$ | $p=.440$ |  |  |  |
| Race/Ethnicity |  |  |  |  |
| Hispanic | 31.1 | 19.8 | 11.4 | . 001 |
| White, non-Hispanic | 19.5 | 17.6 | 2.0 | . 598 |
| Black, non-Hispanic | 22.1 | 12.9 | 9.2 | . 004 |
| Other, non-Hispanic | 31.0 | 25.2 | 5.8 | . 197 |
| F-test of difference ${ }^{\text {b }}$ | $p=.172$ |  |  |  |
| College Entrance Exam Score Quartile |  |  |  |  |
| Highest quartile | 58.8 | 45.6 | 13.2 | . 020 |
| Second quartile | 41.7 | 33.5 | 8.2 | . 041 |
| Third quartile | 29.8 | 22.1 | 7.7 | . 026 |
| Lowest quartile | 17.8 | 12.6 | 5.2 | . 076 |
| Missing score | 17.7 | 8.2 | 9.4 | . 004 |
| F-test of difference ${ }^{\text {b }}$ | $p=.581$ |  |  |  |
| At Least Very Competitive |  |  |  |  |
| Gender |  |  |  |  |
| Female | 48.7 | 37.4 | 11.3 | . 000 |
| Male | 47.4 | 38.7 | 8.6 | . 008 |
| F-test of difference ${ }^{\text {b }}$ | $p=.381$ |  |  |  |
| Race/Ethnicity |  |  |  |  |
| Hispanic | 54.4 | 41.0 | 13.4 | . 001 |
| White, non-Hispanic | 42.6 | 36.0 | 6.6 | . 115 |
| Black, non-Hispanic | 45.3 | 33.9 | 11.4 | . 001 |
| Other, non-Hispanic | 54.7 | 46.2 | 8.6 | . 096 |
| F-test of difference ${ }^{\text {b }}$ | $p=.589$ |  |  |  |
| College Entrance Exam Score Quartile |  |  |  |  |
| Highest quartile | 79.9 | 71.1 | 8.7 | . 195 |
| Second quartile | 70.1 | 53.6 | 16.5 | . 000 |
| Third quartile | 53.5 | 45.4 | 8.0 | . 044 |
| Lowest quartile | 39.5 | 29.1 | 10.4 | . 002 |
| Missing score | 40.2 | 30.8 | 9.4 | . 010 |
| F-test of difference ${ }^{\text {b }}$ | $p=.571$ |  |  |  |
| At Least Competitive |  |  |  |  |
| Gender |  |  |  |  |
| Female | 72.7 | 64.4 | 8.4 | . 004 |
| Male | 68.9 | 61.6 | 7.3 | . 028 |
| F-test of difference ${ }^{\text {b }}$ | $p=.722$ |  |  |  |

APPENDIX C: SUPPLEMENTAL INFORMATION FOR CHAPTER 2

| Selectivity Level Subgroup | Treatment Group Students (\%) | Control Group Students (\%) | Impact | $p$-value ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Race/Ethnicity |  |  |  |  |
| Hispanic | 71.7 | 61.8 | 9.9 | . 015 |
| White, non-Hispanic | 66.4 | 59.9 | 6.5 | . 128 |
| Black, non-Hispanic | 74.3 | 67.3 | 7.0 | . 058 |
| Other, non-Hispanic | 72.2 | 62.0 | 10.3 | . 047 |
| F-test of difference ${ }^{\text {b }}$ |  | $p=.848$ |  |  |
| College Entrance Exam Score Quartile |  |  |  |  |
| Highest quartile | 88.4 | 82.2 | 6.2 | . 350 |
| Second quartile | 84.1 | 72.7 | 11.4 | . 014 |
| Third quartile | 76.3 | 70.7 | 5.6 | . 162 |
| Lowest quartile | 64.0 | 57.0 | 7.0 | . 038 |
| Missing score | 68.8 | 59.2 | 9.6 | . 010 |
| F-test of difference ${ }^{\text {b }}$ |  | $p=.772$ |  |  |
| At Least Somewhat Competitive |  |  |  |  |
| Gender |  |  |  |  |
| Female | 74.8 | 66.4 | 8.4 | . 004 |
| Male | 71.8 | 64.9 | 6.9 | . 037 |
| F-test of difference ${ }^{\text {b }}$ |  | $p=.613$ |  |  |
| Race/Ethnicity |  |  |  |  |
| Hispanic | 73.6 | 64.8 | 8.8 | . 029 |
| White, non-Hispanic | 69.6 | 62.4 | 7.2 | . 089 |
| Black, non-Hispanic | 77.0 | 69.6 | 7.3 | . 046 |
| Other, non-Hispanic | 72.5 | 63.7 | 8.8 | . 083 |
| F-test of difference ${ }^{\text {b }}$ |  | $p=.979$ |  |  |
| College Entrance Exam Score Quartile |  |  |  |  |
| Highest quartile | 89.9 | 82.2 | 7.7 | . 240 |
| Second quartile | 84.7 | 74.2 | 10.6 | . 021 |
| Third quartile | 78.8 | 72.2 | 6.6 | . 099 |
| Lowest quartile | 67.8 | 60.6 | 7.2 | . 032 |
| Missing score | 70.0 | 61.6 | 8.4 | . 022 |
| F-test of difference ${ }^{\text {b }}$ |  | $p=.943$ |  |  |
| Any Four-Year College |  |  |  |  |
| Gender |  |  |  |  |
| Female | 76.4 | 70.8 | 5.6 | . 030 |
| Male | 75.1 | 70.5 | 4.6 | . 128 |
| F-test of difference ${ }^{\text {b }}$ |  | $p=.728$ |  |  |
| Race/Ethnicity |  |  |  |  |
| Hispanic | 77.6 | 73.5 | 4.1 | . 277 |
| White, non-Hispanic | 72.7 | 66.4 | 6.2 | . 112 |
| Black, non-Hispanic | 76.9 | 71.7 | 5.2 | . 124 |
| Other, non-Hispanic | 76.8 | 70.9 | 5.9 | . 221 |

APPENDIX C: SUPPLEMENTAL INFORMATION FOR CHAPTER 2

| Selectivity Level Subgroup | Treatment Group Students (\%) | Control Group Students (\%) | Impact | $p$-value ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: |
| F-test of difference ${ }^{\text {b }}$ | $p=.975$ |  |  |  |
| College Entrance Exam Score Quartile |  |  |  |  |
| Highest quartile | 90.1 | 83.3 | 6.8 | . 284 |
| Second quartile | 84.9 | 77.5 | 7.3 | . 091 |
| Third quartile | 80.3 | 75.1 | 5.2 | . 165 |
| Lowest quartile | 69.9 | 66.5 | 3.4 | . 265 |
| Missing score | 74.1 | 67.8 | 6.3 | . 065 |
| F-test of difference ${ }^{\text {b }}$ | $p=.900$ |  |  |  |
| Any College |  |  |  |  |
| Gender |  |  |  |  |
| Female | 83.6 | 79.7 | 3.9 | . 093 |
| Male | 84.4 | 80.3 | 4.1 | . 137 |
| F-test of difference ${ }^{\text {b }}$ | $p=.957$ |  |  |  |
| Race/Ethnicity |  |  |  |  |
| Hispanic | 82.6 | 83.3 | -0.7 | . 839 |
| White, non-Hispanic | 83.4 | 79.7 | 3.6 | . 306 |
| Black, non-Hispanic | 83.5 | 76.7 | 6.9 | . 024 |
| Other, non-Hispanic | 88.1 | 82.9 | 5.2 | . 231 |
| F-test of difference ${ }^{\text {b }}$ | $p=.293$ |  |  |  |
| College Entrance Exam Score Quartile |  |  |  |  |
| Highest quartile | 92.4 | 85.6 | 6.8 | . 229 |
| Second quartile | 89.1 | 83.7 | 5.4 | . 167 |
| Third quartile | 88.9 | 82.6 | 6.3 | . 061 |
| Lowest quartile | 79.2 | 76.9 | 2.3 | . 407 |
| Missing score | 82.6 | 79.1 | 3.5 | . 257 |
| F-test of difference ${ }^{\text {b }}$ | $p=.781$ |  |  |  |

a $p$-values in this column are for tests of whether there was a statistically significant impact for the subgroup category indicated in the row.
${ }^{\mathrm{b}} p$-values in this row are for a test of whether impacts statistically differed between the categories of the subgroup indicated in the rows above.
Notes: Sample = 1,913 treatment group students and 1,707 control group students for gender, 1,909 treatment group students and 1,704 control group students for race/ethnicity, and 1,920 treatment group students and 1,710 control group students for college entrance exam scores. Treatment group percentage and impact are estimated using the study's regression model. Percentage of students represents those who applied a college of at least a given selectivity level (e.g., at least a "very competitive" college includes applications to colleges at the two selectivity levels above "very competitive", "highly competitive" and "most competitive").
Source: Follow-up student survey 2016; NCES-Barron's Admissions Competitiveness Index 2014; APR 2014-15; college entrance exam score data 2015; baseline student survey 2015.

## APPENDIX C: SUPPLEMENTAL INFORMATION FOR CHAPTER 2

## Exhibit C.6: Impact of Find the Fit on Selectivity Level of Colleges to which Students Applied, by Project Subgroup

| Selectivity Level <br> Subgroup | Treatment <br> Group Students <br> (\%) | Control Group <br> Students <br> (\%) | Impact | p-value |
| :--- | :--- | :--- | :--- | :--- |

APPENDIX C: SUPPLEMENTAL INFORMATION FOR CHAPTER 2

| Selectivity Level Subgroup | Treatment Group Students (\%) | Control Group Students (\%) | Impact | p-value ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: |
| City/suburb/town | 71.7 | 65.2 | 6.5 | . 026 |
| F-test of difference ${ }^{\text {b }}$ | $p=.138$ |  |  |  |
| At Least Somewhat Competitive |  |  |  |  |
| Host Institution Type |  |  |  |  |
| Four-year college | 75.2 | 70.7 | 4.5 | . 209 |
| Two-year college | 66.4 | 55.6 | 10.9 | . 029 |
| Other | 80.4 | 63.6 | 16.7 | . 036 |
| F-test of difference ${ }^{\text {b }}$ | $p=.286$ |  |  |  |
| Locale |  |  |  |  |
| Rural | 68.7 | 53.4 | 15.3 | . 057 |
| City/suburb/town | 74.2 | 67.4 | 6.8 | . 019 |
| F-test of difference ${ }^{\text {b }}$ | $p=.322$ |  |  |  |
| Any Four-Year College |  |  |  |  |
| Host Institution Type |  |  |  |  |
| Four-year college | 77.1 | 76.8 | 0.3 | . 914 |
| Two-year college | 70.2 | 59.3 | 10.9 | . 012 |
| Other | 79.4 | 64.6 | 14.8 | . 032 |
| F-test of difference ${ }^{\text {b }}$ | $p=.047$ |  |  |  |
| Locale |  |  |  |  |
| Rural | 71.6 | 61.8 | 9.8 | . 163 |
| City/suburb/town | 76.4 | 71.8 | 4.6 | . 072 |
| F-test of difference ${ }^{\text {b }}$ | $p=.483$ |  |  |  |
| Any College |  |  |  |  |
| Host Institution Type |  |  |  |  |
| Four-year college | 83.4 | 81.9 | 1.5 | . 593 |
| Two-year college | 83.8 | 78.2 | 5.6 | . 157 |
| Other | 84.8 | 73.2 | 11.6 | . 068 |
| F-test of difference ${ }^{\text {b }}$ | $p=.308$ |  |  |  |
| Locale |  |  |  |  |
| Rural | 80.5 | 83.8 | -3.3 | . 602 |
| City/suburb/town | 84.3 | 79.4 | 4.9 | . 033 |
| F-test of difference ${ }^{\text {b }}$ | $p=.225$ |  |  |  |

a $p$-values in this column are for tests of whether there was a statistically significant impact for the subgroup category indicated in the row.
${ }^{\mathrm{b}} p$-values in this row are for a test of whether impacts statistically differed between the categories of the subgroup indicated in the rows above.
Notes: Sample =1,920 treatment group students and 1,710 control group students. Treatment group percentage and impact are estimated using the study's regression model. Percentage of students represents those who applied a college of at least a given selectivity level (e.g., at least a "very competitive" college includes applications to colleges at the two selectivity levels above "very competitive", "highly competitive" and "most competitive").
Source: Follow-up student survey 2016; NCES-Barron's Admissions Competitiveness Index 2014; APR 2014-15; IPEDS 2015-16.

## APPENDIX C: SUPPLEMENTAL INFORMATION FOR CHAPTER 2

Exhibit C.7: Sensitivity Analyses for Impact of Find the Fit on Selectivity Level of Colleges to which Students Applied

| Selectivity Level <br> Model | Treatment Group <br> Students <br> (\%) | Control Group <br> Students <br> $(\%)$ | Impact | p-value |
| :--- | :---: | :---: | :---: | :---: |


| Selectivity Level Model | Treatment Group Students <br> (\%) | Control Group Students (\%) | Impact | $p$-value |
| :---: | :---: | :---: | :---: | :---: |
| Any College |  |  |  |  |
| Linear regression (main model) | 83.8 | 79.9 | 4.0 | . 067 |
| Logistic regression | 84.2 | 79.9 | 4.4 | . 075 |
| Heteroscedasticity adjustment | 83.8 | 79.9 | 4.0 | . 077 |
| No covariates used in model | 84.2 | 79.9 | 4.3 | . 052 |
| Weighted | 83.7 | 79.9 | 3.8 | . 079 |

Notes: Sample =1,920 treatment group students and 1,710 control group students. Treatment group percentage and impact are estimated using the study's regression model. Percentage of students represents those who applied a college of at least a given selectivity level (e.g., at least a "very competitive" college includes applications to colleges at the two selectivity levels above "very competitive", "highly competitive" and "most competitive").
Source: Follow-up student survey 2016; NCES-Barron's Admissions Competitiveness Index 2014.

## C. 3 Importance of Academic Quality in Choosing a College

Exhibit 2.7 showed that Find the Fit had no impact on whether academic quality was "very important" to students in choosing a college. Exhibit C. 8 shows similar results when responses of "somewhat important" or "very important" were combined.

Exhibit C.8: Impact of Find the Fit on Whether Academic Quality was Somewhat Important or Very Important to Students in Choosing a College


[^4]
## APPENDIX C: SUPPLEMENTAL INFORMATION FOR CHAPTER 2

Exhibit C.9: Impacts of Find the Fit on Whether Academic Quality was Very Important to Students in Choosing a College, Overall and for Subgroups

|  | Treatment <br> Group Students <br> $(\%)$ | Control Group <br> Students <br> $(\%)$ | Impact | p-value $^{\text {a }}$ |
| :--- | :--- | :---: | :---: | :---: | :---: |

a $p$-values in this column are for tests of whether there was a statistically significant impact for the subgroup category indicated in the row.
${ }^{\mathrm{b}} p$-values in this row are for a test of whether impacts statistically differed between the categories of the subgroup indicated in the rows above.
Notes: Sample = 1,920 treatment group students and 1,710 control group students for overall impact, 1,913 treatment group students and 1,707 control group students for gender, 1,909 treatment group students and 1,704 control group students for race/ethnicity, 1,920 treatment group students and 1,710 control group students for college entrance exam scores, 1,920 treatment group students and 1,710 control group students for host institution type, and 1,920 treatment group students and 1,710 control group students for locale.
Percent represents the share of students who reported academic quality is "very important." Treatment group percentage and impact are estimated using the study's regression model.
Source: Follow-up student survey 2016; APR 2014-15; college entrance exam score data 2015; IPEDS 2015-16; baseline student survey 2015.

## APPENDIX C: SUPPLEMENTAL INFORMATION FOR CHAPTER 2

## Exhibit C.10: Sensitivity Analyses for Impact of Find the Fit on Whether Academic Quality was Very Important to Students in Choosing a College

|  | Treatment Group <br> Students | Control Group <br> Students |
| :--- | :---: | :---: | :---: | :---: |
| Model | 77.3 | $(\%)$ |

Notes: Sample = 1,920 treatment group students and 1,710 control group students. Percent represents the share of students who reported academic quality is "very important." Treatment group percentage and impact are estimated using the study's regression model.
Source: Follow-up student survey 2016.

## C. 4 Complete FAFSA by March 15

Exhibit C.11: Impacts of Find the Fit on Whether Students Completed the FAFSA by March 15, Overall and for Subgroups

|  | Treatment Group Students <br> (\%) | Control Group Students (\%) | Impact | $p$-value ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Overall Impact |  |  |  |  |
|  | 64.6 | 60.9 | 3.7 | . 185 |
| Impact by Student Characteristic |  |  |  |  |
| Gender |  |  |  |  |
| Female | 67.1 | 62.0 | 5.2 | . 080 |
| Male | 60.3 | 59.3 | 1.1 | . 743 |
| F-test of difference ${ }^{\text {b }}$ | $p=.135$ |  |  |  |
| Race/Ethnicity |  |  |  |  |
| Hispanic | 64.8 | 61.3 | 3.5 | . 383 |
| White, non-Hispanic | 67.8 | 70.0 | -2.2 | . 604 |
| Black, non-Hispanic | 64.1 | 54.2 | 9.9 | . 007 |
| Other, non-Hispanic | 59.9 | 63.3 | -3.4 | . 496 |
| F-test of difference ${ }^{\text {b }}$ | $p=.032$ |  |  |  |
| College Entrance Exam Score Quartile |  |  |  |  |
| Highest quartile | 87.3 | 90.1 | -2.8 | . 669 |
| Second quartile | 83.2 | 80.7 | 2.5 | . 583 |
| Third quartile | 74.0 | 70.8 | 3.2 | . 418 |
| Lowest quartile | 60.0 | 52.2 | 7.8 | . 018 |
| Missing score | 53.5 | 53.1 | 0.3 | . 928 |
| F-test of difference ${ }^{\text {b }}$ | $p=.198$ |  |  |  |
| Impact by Project Characteristic |  |  |  |  |
| Host Institution Type |  |  |  |  |
| Four-year college | 64.4 | 63.7 | 0.8 | . 836 |
| Two-year college | 61.5 | 52.2 | 9.3 | . 069 |
| Other | 68.7 | 64.3 | 4.4 | . 593 |
| F-test of difference ${ }^{\text {b }}$ | $p=.398$ |  |  |  |
| Locale |  |  |  |  |
| Rural | 67.7 | 55.6 | 12.1 | . 141 |
| City/suburb/town | 64.2 | 61.6 | 2.6 | . 383 |
| F-test of difference ${ }^{\text {b }}$ | $p=.277$ |  |  |  |

${ }^{\text {a }} p$-values in this column are for tests of whether there was a statistically significant impact for the subgroup category indicated in the row.
${ }^{\mathrm{b}} p$-values in this row are for a test of whether impacts statistically differed between the categories of the subgroup indicated in the rows above.
Notes: Sample $=2,336$ treatment group students and 2,107 control group students for overall impact, 2,318 treatment group students and 2,102 control group students for gender, 2,311 treatment group students and 2,099 control group students for race/ethnicity, 2,336 treatment group students and 2,107 control group students for college entrance exam scores, 2,336 treatment group students and 2,107 control group students for host institution type, and 2,336 treatment group students and 2,107 control group students for locale.
Percent represents the share of students who completed the FAFSA by March 15 of their senior year. Treatment group percentage and impact are estimated using the study's regression model.
Source: FSA 2016; APR 2014-15; college entrance exam score data 2015; IPEDS 2015-16; baseline student survey 2015.

## Exhibit C.12: Sensitivity Analyses for Impact of Find the Fit on Whether Students Completed the FAFSA by March 15

|  | Treatment Group <br> Students <br> (\%) | Control Group <br> Students |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Model | 64.6 | 60.9 | Impact | p-value |

Notes: Sample $=2,336$ treatment group students and 2,107 control group students. Percent represents the share of students who completed the FAFSA by March 15 of their senior year. Treatment group percentage and impact are estimated using the study's regression model. There is no weighted sensitivity analysis for this outcome because there are no missing data for this outcome.
Source: FSA 2016.

## APPENDIX D: SUPPLEMENTAL INFORMATION FOR CHAPTER 3

## Appendix D. Supplemental Information for Chapter 3

This appendix provides additional information about projects' use of the Find the Fit student materials to supplement the data provided in Chapter 3.

Exhibit D. 1 provides more details on the specific student materials that treatment projects reported using. The four most commonly used materials-the College Application Timeline Reminders sheet, My College Planner booklet, Scholarships and Grants guide, and Four Factors of Fit handout—were each reported as used by more than 80 percent of projects. The Start Your $2+2$ Planning guide was the least used student material: only 43 percent of treatment projects reported using it. Another material with lower usage was the Break Beyond the Familiar activity; slightly more than half of projects reported using this material that involved the adaptive mindset video and an activity to encourage students to recognize their own ability to learn and grow in unfamiliar environments.

Exhibit D.1: Treatment Group Projects' Reported Use of Each Find the Fit Material


Notes: Sample = 94 treatment group projects. Percent represents the share of treatment group projects that reported using each Find the Fit material.
Source: Project survey 2016.
Exhibit D. 2 and Exhibit D. 3 explore impacts on each of the interim outcomes by level of implementation of Find the Fit. Across the four interim outcomes, there was not a consistent pattern of variation in impacts associated with the different levels of Find the Fit implementation, nor were there any statistically significant differences in impacts by implementation level. The lack of consistent differences across implementation levels may suggest that the implementation measures the study created mask

## APPENDIX D: SUPPLEMENTAL INFORMATION FOR CHAPTER 3

importance differences in how projects implemented Find the Fit or they may derive from the flexibility treatment group projects had to use Find the Fit as they deemed best.

## Exhibit D.2: Impacts of Find the Fit on Three Interim Outcomes, by Project Implementation Category

|  | Treatment Group Students <br> (\%) | Control Group Students (\%) | Impact | $p$-value ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Panel 1. Applied to Four or More Colleges |  |  |  |  |
| Low implementers | 38.3 | 41.2 | -2.9 | . 734 |
| Moderate implementers | 56.2 | 46.0 | 10.2 | . 019 |
| High implementers | 53.3 | 42.3 | 11.1 | . 016 |
| F-test of difference ${ }^{\text {b }}$ | $p=.334$ |  |  |  |
| Panel 2. Rated Academic Quality as Very Important in Choosing a College |  |  |  |  |
| Low implementers | 76.0 | 84.0 | -8.1 | . 088 |
| Moderate implementers | 78.3 | 79.9 | -1.6 | . 483 |
| High implementers | 76.8 | 75.1 | 1.7 | . 478 |
| F-test of difference ${ }^{\text {b }}$ | $p=.173$ |  |  |  |
| Panel 3. Completed FAFSA by March 15 |  |  |  |  |
| Low implementers | 58.9 | 55.7 | 3.2 | . 699 |
| Moderate implementers | 64.7 | 64.2 | 0.5 | . 908 |
| High implementers | 65.9 | 59.0 | 6.9 | 120 |
| F-test of difference ${ }^{\text {b }}$ | $p=581$ |  |  |  |

a $p$-values in this column are for tests of whether there was a statistically significant impact for the implementation category indicated in the row.
${ }^{\mathrm{b}} p$-values in this row are for a test of whether impacts statistically differed between the implementation categories indicated in the rows above.
Notes: Sample for panels 1 and $2=217$ treatment group students and 194 control group students in the low implementers category, 1,011 treatment group students and 726 control group students in the moderate implementers category, and 692 treatment group students and 790 control group students in the high implementers category. Sample for panel $3=267$ treatment group students and 235 control group students in the low implementers category, 1,267 treatment group students and 919 control group students in the moderate implementers category, and 802 treatment group students and 953 control group students in the high implementers category. Percentage represents the share of students who (panel 1) reported applying to four or more colleges by spring of their senior year in high school; (panel 2) reported academic quality was "very important" in choosing a college; and (panel 3) completed the FAFSA by March 15 of their senior year of high school. Treatment group percentage and impact are estimated using the study's regression model. Treatment group projects were categorized as low implementers if they implemented less than 25 percent of any one Find the Fit; moderate implementers if they implemented more than a quarter but not necessarily 75 percent of each component; and high implementers if they implemented 75 percent of more of each component.
Source: For all panels - project survey 2016 and intervention monitoring data 2015-16; for panels 1 and 2 - follow-up student survey 2016; for panel 3-Federal Student Aid 2016.

Exhibit D.3: Impacts of Find the Fit on Selectivity Level of Colleges to which Students Applied, by Project Implementation Category

|  | Treatment <br> Group Students <br> $(\%)$ | Control Group <br> Students <br> $(\%)$ | Impact | $\boldsymbol{p}^{\text {-value }}{ }^{\text {a }}$ |
| :--- | :---: | :---: | :---: | :---: |
| Most Competitive | 10.5 | 5.2 | 5.3 | .242 |
| Low implementers | 10.9 | 7.2 | 3.8 | .103 |
| Moderate implementers |  |  |  |  |

## APPENDIX D: SUPPLEMENTAL INFORMATION FOR CHAPTER 3

|  | Treatment Group Students (\%) | Control Group Students (\%) | Impact | p-value ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: |
| High implementers | 11.3 | 8.1 | 3.2 | . 193 |
| F-test of difference ${ }^{\text {b }}$ | $p=.917$ |  |  |  |
| At Least Highly Competitive |  |  |  |  |
| Low implementers | 19.3 | 14.4 | 4.9 | . 489 |
| Moderate implementers | 25.7 | 18.0 | 7.7 | . 034 |
| High implementers | 25.3 | 17.5 | 7.9 | . 039 |
| F-test of difference ${ }^{\text {b }}$ | $p=.930$ |  |  |  |
| At Least Very Competitive |  |  |  |  |
| Low implementers | 40.4 | 32.5 | 7.9 | . 295 |
| Moderate implementers | 47.9 | 41.2 | 6.7 | . 081 |
| High implementers | 50.6 | 36.1 | 14.5 | . 000 |
| F-test of difference ${ }^{\text {b }}$ | $p=.358$ |  |  |  |
| At Least Competitive |  |  |  |  |
| Low implementers | 59.9 | 53.1 | 6.8 | . 400 |
| Moderate implementers | 74.7 | 65.6 | 9.2 | . 026 |
| High implementers | 70.9 | 63.9 | 6.9 | . 111 |
| F-test of difference ${ }^{\text {b }}$ | $p=.924$ |  |  |  |
| At Least Somewhat Competitive |  |  |  |  |
| Low implementers | 60.5 | 55.7 | 4.9 | . 545 |
| Moderate implementers | 76.8 | 67.6 | 9.1 | . 026 |
| High implementers | 74.0 | 66.7 | 7.3 | . 091 |
| F-test of difference ${ }^{\text {b }}$ | $p=.884$ |  |  |  |
| Any Four-Year College |  |  |  |  |
| Low implementers | 62.3 | 58.2 | 4.1 | . 562 |
| Moderate implementers | 78.5 | 72.3 | 6.1 | . 084 |
| High implementers | 76.9 | 72.3 | 4.7 | . 213 |
| F-test of difference ${ }^{\text {b }}$ | $p=.945$ |  |  |  |
| Any College |  |  |  |  |
| Low implementers | 83.0 | 78.4 | 4.7 | . 466 |
| Moderate implementers | 85.5 | 79.2 | 6.3 | . 055 |
| High implementers | 82.3 | 80.9 | 1.4 | . 674 |
| F-test of difference ${ }^{\text {b }}$ | $p=.600$ |  |  |  |

${ }^{\text {a }} p$-values in this column are for tests of whether there was a statistically significant impact for the implementation category indicated in the row. ${ }^{\mathrm{b}} p$-values in this row are for a test of whether impacts statistically differed between the implementation categories indicated in the rows above. Notes: Sample = 217 treatment group students and 194 control group students in the low implementers category, 1,011 treatment group students and 726 control group students in the moderate implementers category, and 692 treatment group students and 790 control group students in the high implementers category. Treatment group percentage and impact are estimated using the study's regression model. Treatment group projects were categorized as low implementers if they implemented less than 25 percent of any one Find the Fit component; moderate implementers if they implemented more than a quarter but not necessarily 75 percent of each component; and high implementers if they implemented 75 percent of more of each component.
Source: Follow-up student survey 2016; NCES-Barron's Admissions Competitiveness Index 2014; project survey 2016; intervention monitoring data 2015-16.



[^0]:    2 Standard regression models typically used to estimate impacts assume every student is independent of every other student in the sample. However, because students were grouped within Upward Bound projects in this study, there are bound to be commonalities or interdependence for students from the same project.

    3 Examples include the evaluation of the Teacher Incentive Fund (Max et al. 2014) and the evaluation of the Talent Transfer Initiative (Glazerman, Protik, Teh, Bruch, and Max 2013).

    4 Mean values for binary variables are proportions. For example, if $Y_{i j}$ has a value of 1 for students who applied to four or more colleges and a 0 for students who did not, then the mean is the proportion of students - or, if multiplied times 100, the percentage of students - in project $j$ who applied to four or more colleges. In other words, a mean of 0.48 indicates that 48 percent of students in project $j$ applied to four or more colleges (. 48 x $100=48$ ).

[^1]:    5 The dummy variable method involves substituting a constant value (e.g., 0 ) for all missing values of a given baseline variable and including a dummy variable to indicate cases that had a missing value for the variable (i.e., a value of 1 for cases with a missing value, and 0 for those with a non-missing value).

[^2]:    6 The main analyses adjusted for baseline student characteristics in an effort to improve precision of the impact estimates, even though covariate adjustment was not necessary to account for baseline differences between treatment and control groups.

[^3]:    7 Weights to adjust for nonresponse were calculated following methods described in Puma, Olsen, Bell, and Price (2009). Specifically, a logistic regression model predicting the likelihood of nonresponse for each student, controlling for the full set of baseline student characteristics and adjusting for randomization blocks, was estimated separately for the treatment and control groups. Then, covariates with $p$-values $>0.5$ were dropped from the model, and nonresponse weights were calculated as the inverse of the propensity scores.

[^4]:    Notes: Sample = 1,920 treatment group students and 1,710 control group students. Percentage of students represents those who reported academic quality is "somewhat important" or "very important" in choosing a college. Treatment group percentage and impact are estimated using the study's regression model.
    Source: Follow-up student survey 2016.

